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Abstract
We present privacy-sensitive methods for (1) automatically
finding multi-person conversations in spontaneous, situated
speech data and (2) segmenting those conversations into speaker
turns. The methods protect privacy through a feature set that
is rich enough to capture conversational styles and dynamics,
but not sufficient for reconstructing intelligible speech. Exper-
imental results show that the conversation finding method out-
performs earlier approaches and that the speaker segmentation
method is a significant improvement to the only other known
privacy-sensitive method for speaker segmentation.
Index Terms: conversation modeling, speaker diarization, privacy,
context-aware computing

1. Introduction
Existing spontaneous speech processing efforts have considered
settings—meetings, phone conversations, interviews [1, 2, 3]—
where the content of the speech is unpredictable, but the deci-
sion to have a conversation is made in advance. In these sce-
narios the dialogue is spontaneous, but the existence of the con-
versation is not. Many important interactions are unplanned: a
chance meeting in an elevator or hallway, a random visit to a
colleague’s office, or an impromptu trip to a coffee shop. There
are currently very few projects that consider such situated spon-
taneous speech: speech recorded “in the wild” as people go
about their lives and their conversations occur spontaneously.

Portable devices capable of such recordings have grown in
storage capacity while becoming smaller, cheaper, and more
powerful. But obstacles to gathering situated spontaneous
speech still remain, and perhaps no other obstacle is as promi-
nent as privacy.

Collecting situated speech requires recording people in un-
constrained and unpredictable situations, both public and pri-
vate. There is little control over who or what may be recorded:
we cannot just carry a microphone into any café, office, or re-
stroom. Uninvolved parties could be recorded without their
consent—a scenario that, if raw audio is involved, is always
unethical and often illegal. Recording spontaneous data in real-
world situations requires protecting the privacy of those in-
volved by not always storing complete audio.

In this paper we present a method for discovering and seg-
menting multi-person conversations in privacy-sensitive audio
data. We hope to employ this method to model the social net-
work of a group of 24 people from over 4400 hours of privacy-
sensitive, situated audio data that we have collected from them
[4]. Beyond social network analysis, our techniques can be em-
ployed in any application that needs to know the social context
of its users while respecting their privacy by not recording ev-
erything they say. We believe research in meeting understand-
ing, medical assessment (e.g. depression, autism), and context-
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aware computing would greatly benefit from increased access to
spontaneous speech data even if the raw audio is not available.

The key contributions of this paper are: (1) A method to au-
tomatically discover multi-person conversations. (2) A privacy-
sensitive speaker segmentation model that outperforms previ-
ous privacy-sensitive techniques. And (3) the evaluation of
these methods on truly situated speech in different settings and
with different numbers of speakers. Additionally, our method
is lightweight, fast, and easily decomposable into distributed
components that could be deployed on a network of wearable
devices that infer their wearers’ social behavior in real-time.

2. Privacy-Sensitive Situated Speech Data
Data in our corpus is gathered using a wearable multi-sensor
platform containing a microphone which is connected to a PDA
that extracts a set of privacy-sensitive features in real-time [4].
Streams of these features are available from individuals whose
conversations are to be modeled. The assumption that all in-
volved participants are wearing microphones allows for more
restrictions on the data collected and greater privacy assurances
for both participants and uninvolved 3rd parties. Additionally,
wearable devices enable the collection of situated speech in any
location, not just specially instrumented rooms. The data con-
sidered in this paper is identical to the larger corpus mentioned
above, but with the raw audio also saved in order to establish
ground truth.

2.1. Privacy-Preserving Features
To protect the privacy of anyone within the range of the micro-
phone we must ensure that the acoustic information that is saved
cannot be used to reconstruct intelligible speech. At the same
time we must preserve enough information to infer (1) when
conversations occur and (2) who was speaking when and how
(e.g. pitch, energy, rate).

To ensure that we cannot reconstruct verbal content, the fea-
tures we record do not preserve formant information. Our ap-
proach for inferring when and how a person is speaking, and
which person is speaking (if the speaker is wearing a device), is
based on detecting regions of audio that contain voiced speech.
Since situated speech data can be recorded in widely varying
noise situations, it is important that our features are robust to
noise. Features that have been shown to be useful in robustly
detecting voiced speech under varying noise conditions are: (1)
non-initial maximum autocorrelation peak, (2) the total number
of autocorrelation peaks, and (3) relative spectral entropy [5].

We use 33.33ms frames with overlaps of 16.67ms, which
is the same as in [5]. In this paper we use two different frame
rates, so let us call these 60 Hz frames voicing frames. For
each voicing frame, the relative entropy (Kullback-Leibler di-
vergence) is computed between the normalized power spectrum
of the current voicing frame and a normalized running average
of the power spectra of the last 500 voicing frames (≈8.33s). In



addition to the above three features, we also save each frame’s
energy.

3. Finding Conversations
Let us assume that we have K separate streams of audio from
K different people. The goal of the conversation discovery step
is to determine, for a window of time, a partitioning of the K
streams into groups such that all of the people within a group are
engaged in conversation with each other, and not with people in
other groups.

To the best of our knowledge, there are only three existing
proposals for finding conversations in streams of audio. [6] uses
an HMM whose states correspond to every possible partition-
ing of the speakers and whose observations are binary speaker
activity indicators (e.g. whether person A is speaking). The
method in [7] computes normalized cross-correlation between
raw audio signals and concludes that two people are in a con-
versation if their correlation coefficients are above a threshold
estimated from labeled data. Similarly, the method in [8] com-
putes the mutual information (MI) between binary signals that
represent voiced/unvoiced speech and places two people in a
conversation if their MI is above a given threshold. Our method
extends that of [8] to (1) handle multi-person (beyond pairwise)
conversations (2) operate at a finer time granularity, and (3)
learn the MI threshold in an unsupervised manner.

We treat conversation finding as a clustering problem where
the goal is to cluster windows of audio streams together if the
individuals who recorded those streams were in a conversation
during the window. Our method is as follows.

First, for each audio stream, we infer the posterior distri-
bution of voiced speech in each voicing frame. This inference
is done with an HMM whose observations are the three voic-
ing features described above and whose hidden state is a binary
variable indicating whether or not the frame contains voiced
speech. Each observation probability is modeled with a single
three-dimensional, full covariance Gaussian. The parameters
of the voicing HMM are learned from data that does not contain
any of the speakers in our evaluation data or in the larger corpus.
This voicing HMM has been shown to be speaker-independent
and robust across different environmental conditions [5]. For
each stream, we use the forward-backward algorithm to infer
the voicing posteriors given the entire recorded stream.

Once the voicing posteriors are computed, we aggregate W
voicing frames into longer non-overlapping conversation win-
dows. To determine whether two people are in conversation to-
gether, we examine the MI between simultaneous conversation
windows from each of their streams. The MI between streams
A and B for conversation window w is:
I(Aw; Bw) =

∑
v,v′ P (Aw = v, Bw = v′) log P (Aw=v,Bw=v′)

P (Aw=v)P (Bw=v′)

Letting PA(Vt = v) be the voicing posterior from stream A
at voicing frame t, the voicing distributions for conversation
window w (beginning at voicing frame τ ) are estimated as:

P (Aw = v, Bw = v′) , 1
W

∑τ+W

t=τ
PA(Vt = v)PB(Vt = v′)

P (Aw = v) , 1
W

∑τ+W

t=τ
PA(Vt = v)

That is, we estimate the conversation window voicing distribu-
tions using “soft” counts from the voicing posteriors instead of
hard counts from actual observations so that the uncertainty in
the voicing inference can be carried through to the conversation
inference.

While there are many methods for computing the similarity
between two signals, MI between voicing streams is well suited
for finding conversations between people wearing microphones.
At physical distances that are normal for face-to-face conversa-
tions, all the microphones are likely to pick up the speech of

any speaker in the conversation. It is extremely unlikely that
two microphones that are not close enough for their wearers to
be in a conversation will observe the same speech signal. Note
that this is precisely the opposite of the justification presented in
[8] which assumed voiced signals to be complementary. Other
metrics (e.g. correlation between energy, which we consider
below) do not have this property.

To enforce some temporal smoothing we do not use the
MI from a single window alone, but rather a similarity met-
ric that uses MI from multiple, neighboring conversation win-
dows. The similarity metric is defined as D(Aw, Bw) =∑w+n

τ=w−n
ατI(Aw; Bw) where α is a triangular window of

length 2n + 1 and
∑

τ
ατ = 1. We experimented with var-

ious conversation window sizes, both overlapping and non-
overlapping, and achieved the best results for a window size
of 20s (W=1200 voicing frames) with n=1.

Given the similarity metrics between all pairs of streams,
we use agglomerative clustering to group the streams into con-
versations. Agglomerative clustering is fast and does not re-
quire advance knowledge of the number of clusters in the data—
a useful property since we do not know how many conversations
are occurring at a given time. Our application of agglomerative
clustering requires a similarity threshold below which it should
stop merging clusters. Unlike the earlier methods which learn
thresholds from labeled data, we instead take advantage of the
nature of our similarity metric to learn a threshold in an unsuper-
vised way. The histogram of D across all conversation frames
and pairs is distinctly bimodal. One mode corresponds to the
frames from pairs that are not in conversation and for which
D ≈ 0. The other mode corresponds to the frames from pairs
that are in conversation for which D > 0. Thus, we can cluster
the values of D into two groups using k-means (with k=2) and
use the midpoint between the two cluster means as the threshold
for the agglomerative conversation clustering.

4. Speaker Segmentation
Once conversations have been segmented, we want to infer who
was speaking when in each conversation. This is a task known
as speaker diarization and there are a number of existing meth-
ods for it [9, 10, 11]. However, all of these methods use features
(primarily MFCCs) from which the linguistic content of the sig-
nal can be easily reconstructed, i.e., they do not meet our pri-
vacy requirements. In [12] we presented a technique for speaker
segmentation that uses only privacy-sensitive features. In this
section we present a refinement of our previous technique that
achieves better empirical results on the same privacy-sensitive
feature set while using a simpler, faster model.

4.1. Pairwise Speaker Segmentation
Similar to our approach to conversation detection, our speaker
segmentation method begins with pairwise comparisons. For a
pair of speakers A and B, we aggregate the voicing frames into
longer speaking frames. The longer speaking frames reduce the
sensitivity of the speaker segmentation algorithm to small er-
rors in the voicing inference. We use a speaking frame size
of 0.26s (T=16 voicing frames) with an overlap of 0.13s. The
NIST standard for evaluating speaker segmentation [13] allows
for 0.25s of forgiveness around speaker turn transitions, so we
are operating at the maximum conventional granularity.

Let ws be a binary random variable that indicates whether
or not a person speaks during speaking frame s. We define the
probability that a person is speaking during frame s in stream
A as:

PA(ws) , 1− e−λvs

where vs = 1
T

∑τ+T

t=τ
PA(vt) is the proportion of voiced



frames in speaking frame s. Intuitively, this model assumes that
the probability that no one is speaking decreases exponentially
with the number of voiced frames observed. For each speaking
frame s in stream A, we also compute the mean energy (gA

s ) of
its constituent voicing frames.

For these speaking frames, we instantiate a new HMM
whose hidden state S has four values: (1) no one is speaking, (2)
A is speaking, (3) B is speaking, or (4) someone other than A or
B is speaking. Call these states n, a, b, and u. The observations
for this speaker HMM are the log ratios of the speaker frame
energies: rs = log gA

s − log gB
s . The speaker HMM observa-

tion probabilities, Po(rs|Ss), are modeled as a one-dimensional
Gaussian distribution. The mean of the Gaussian observation
probability for states n and u is set to 0. The mean for states a
and b is learned from 3 minutes of data collected in a location
and from a set of speakers that are different from those in our
evaluation data. A single mean ĝ is estimated for all pairs of
speakers, and states a and b have their means set to ĝ and −ĝ.
The variances of the Gaussians for all the four states (identical
for a and b) are also estimated from this training data, as is the
speech probability parameter λ.

Generally, rs > 0 when S = a, rs < 0 when S = b, and
rs ≈ 0 when S = n or S = u. To disambiguate between n
and u, the speaker HMM also incorporates the posteriors from
the voicing HMMs as virtual evidence [14] which introduces a
pseudo-observation vector X whose value is always observed
to 1, i.e. ∀s xs = 1. This entails adding additional observation
probabilities based on the speech probabilities:
P (xs = 1|Ss = a) , PA(ws),
P (xs = 1|Ss = b) , PB(ws),
P (xs = 1|Ss = n) , 1− 1

2
(PB(ws) + PA(ws)), and

P (xs = 1|Ss = u) , 1
2
(PB(ws) + PA(ws)).

The transition probabilities are set to intuitive initial val-
ues which are refined for each conversation using expectation-
maximization (EM). Once the EM step converges, we infer the
posterior distribution for each speaker frame using the forward-
backward algorithm.

Learning the transition probabilities from the separate train-
ing set reduced overall accuracy, as did learning the observation
probabilities using EM. This suggests that speaker transitions
vary for different pairs of people in different conversations, but
that energy ratios are somewhat the same.

4.2. Combining Pairwise Segmentations
Once a posterior distribution over speaker states has been in-
ferred for all pairs, these pairwise distributions are combined
into a single, global distribution for the entire conversation.
This is done by first expanding each pairwise distribution into
a larger distribution with more than four states. This expanded
distribution has a state for each speaker who has been placed in
the conversation (by the clustering step), as well as a state for no
speaker and a state for any other unmiked speakers. The prob-
ability assigned to state u for the pair is divided evenly among
the other speakers’ states (i.e. all but A and B) and the unmiked
speaker state.

The expanded distributions from each pair are then com-
bined to form the global distribution. We evaluated two sim-
ple methods of combining the distributions: summing P (Ss =
y) = 1

Z

∑
k

Pk(Ss = y) and multiplying P (Ss = y) =
1
Z

∏
k

Pk(Ss = y), where Pk(Ss = y) is posterior probability
computed by pair k and Z is a normalizing term. The summing
approach achieved better empirical results.

5. Evaluation
To evaluate our methods we collected 50 minutes of data from
5 people who wore our recording devices while moving around

mics accuracy precision recall partial prec.
5 99.2 95.1 92.9 99.0
4 98.5 96.5 91.5 98.2
3 97.5 97.1 91.5 98.2
2 96.1 98.1 93.3 98.1

(a) Multiperson
mics accuracy precision recall

5 97.2 97.5 96.4
4 96.8 97.7 95.2
3 96.2 97.8 94.0
2 96.1 98.1 93.3

(b) Pairwise
Table 1: Conversation detection results using voicing MI

a building and entering and leaving different conversations with
one another. The participants were told where to go and whom
to speak to, but not what to talk about. They are all friends and
had no trouble filling the time with casual conversation. The
two primary locations were a quiet meeting room and a loud
and noisy atrium (where most of the background noise is other
speech), but conversations also occurred while the participants
walked together and rode elevators between locations.

To test the performance of our methods in the presence
of unmiked speakers, we selectively removed streams from
the data set and performed inference using only the remaining
streams. Results reported for fewer than five microphones are
computed over all permutations of that number of microphones.

5.1. Conversation Detection
We measured the accuracy, precision, and recall of conversation
detection in two ways: per conversation and per pair. The per
conversation measurements consider all possible multi-person
conversations that could occur between the given number of
speakers. In the per conversation evaluation, a true positive
means that all participants in a conversation are grouped cor-
rectly. False positives, and true and false negatives are defined
similarly. The per pair measurements consider each pair of
speakers separately. A pairwise true positive indicates that two
people were grouped correctly in a conversation without con-
sidering the placement of the other participants. False positives,
and true and false negatives are defined similarly. For the multi-
person evaluation we also compute the proportion of false pos-
itive conversations that are subsets of true conversations. We
compute a “partial precision” by reducing the error in the true
precision by that proportion.

Table 1 shows our conversation detection results. Overall,
they are very promising and are a significant improvement on
the earlier technique proposed in [8]. That approach modeled
pairwise conversations only and achieved the following perfor-
mance rates on our data: accuracies ranging from 78.6 to 81.2,
precisions from 95.9 to 98.4, and recalls from 53.9 to 61.4. That
earlier technique used 60 second conversation windows to avoid
false positives, but at a significant reduction in recall. By us-
ing shorter frames while still considering the MI of neighboring
frames we can achieve higher precision with greatly increased
recall. Additionally, we get a small benefit (0.5%−2.0%) from
using soft counts instead of hard counts from voicing inference
when computing the MI scores.

Because we do not perform speaker segmentation before
conversation detection, we cannot evaluate the technique from
[6] on our data. Nevertheless, the best accuracy reported in [6]
is 87.5, which our technique exceeds in all cases.

We also cannot compare our conversation detection tech-
nique directly to that from [7] since that technique made use of
the entire audio signal and does not protect the speakers’ pri-
vacy. We can, however, approximate it in a privacy-sensitive
way by considering the correlation between energies aggregated
into voicing frames. When cross correlation between energies is



mics accuracy precision recall DER
5 81.2 82.9 94.4 11.1
4 77.9 79.2 93.9 15.9
3 74.8 76.0 93.2 20.4
2 73.1 74.8 92.4 23.5

(a) All data
mics accuracy precision recall DER

4 82.0 81.7 97.8 16.7
3 79.3 78.5 98.1 18.0
2 74.4 73.5 97.0 23.2

(b) Subset of the data used in [12]
Table 2: Speaker segmentation results

used (instead of MI between voicing inferences) to detect con-
versations, multi-person accuracies ranged from 92.6 to 98.3,
precisions from 86.9 to 89.3, and recalls from 98.9 to 82.5.
Accuracy decreases notably, but precision decreases even more
severely. Since one goal of this technique is to build a model
of a social network, low precision is more detrimental than low
recall. For accurate sociological analyses, ties should not be
inferred where none exist.

5.2. Speaker Segmentation
To evaluate speaker segmentation, for each speaker frame we
choose the most likely state from the combined speaker distri-
butions and compare it to the ground truth. From this compari-
son, we compute four evaluation metrics: (1) accuracy–the frac-
tion of frames in which the inferred state matches the ground
truth state, (2) precision–the fraction of the frames for which
the correct speaker is inferred, (3) recall–the fraction of truly
spoken frames for which any speaker is inferred (i.e., the ac-
curacy of basic speech-detection), and (4) the diarization error
rate (DER)–a standard metric used by NIST [13] to measure
the performance of speaker segmentation systems. DER is a re-
laxed version of error rate that merges pauses shorter than 0.3s
long and ignores 0.25s of data around a change in speaker.

Table 2(a) shows speaker segmentation results for all 50
minutes of data. These results are comparable with current
speaker diarization results: 18.6 is currently the best reported
DER (achieved with non-privacy-sensitive features) for meet-
ing data [13]. Unfortunately the dataset from that evaluation is
not readily available, so we could not compare results directly.
The results presented in this paper are also an improvement on
our earlier technique [12], which was evaluated on a subset of
this data containing 6 conversations (separated by hand, not au-
tomatically) between four speakers. It had accuracies ranging
from 53.4 to 71.8, precisions from 53.8 to 72.5, recalls from
90.2 to 98.9, and DERs from 41.9 to 13.6. Table 2(b) shows the
performance of the current speaker segmentation on that same
subset.

In [12], we used a dynamic Bayesian network to simul-
taneously infer voicing and speaker segmentation. That joint
model introduced correlations between energy observations and
voicing inference which reduced the accuracy of the otherwise
energy-independent voicing detector. Separating the voicing
inferences from the speaker segmentation step and combining
them through virtual evidence removed this correlation and im-
proved the our system’s performance.

6. Social Context-Aware Applications
Beyond improving performance, the separation of voicing in-
ference from speaker segmentation also allows our technique
to be modified to work in real-time and the computation to be
distributed among wearable devices. Even though the results
reported here use posteriors computed from 50 minutes of data,
we have empirically determined that fixed lag smoothing with
a lag of 916ms (55 voicing frames) is enough to yield identical
posterior distributions.

If devices could compute their own voicing posteriors, they
could share them with one another and infer whether their wear-
ers were in a conversation together. This information could then
be used by applications that need to know their users’ imme-
diate social context. If the devices share their observed mean
energies along with their voicing posteriors, then the pairwise
speaker segmentation inferences could be shared between de-
vices (with each device in an n person conversation responsible
for

(
n
2

)
/n speaker segmentations, on average). Once the pair-

wise segmentations have been combined into a global inference
(which is simple addition), each device would have a model of
the conversation’s turn-taking dynamics.

Since all of the information shared between devices in those
scenarios is privacy preserving and cannot be used to recon-
struct speech it is safe for devices to share it without fear
that they are broadcasting their entire acoustic environment be-
yond where it could normally be heard. Additionally, people—
especially uninvolved 3rd parties—may be more receptive to
intelligent environments that use audio data if they know that
the data being used is not raw audio and that their speech is not
being recorded or recognized and transcribed.

7. Conclusion
We have presented a method for automatically finding conver-
sations in privacy preserving data and segmenting those conver-
sations into speaker turns. The method makes use of several
small, fast inference procedures and combines them using vir-
tual evidence. The conversation finding technique outperforms
the other three known methods for conversation discovery. The
speaker segmentation model improves the performance of our
earlier system—the only other privacy-sensitive speaker seg-
mentation work that we are aware of. The decomposition of
the problem also allows for our method to be extended to work
in a distributed network of wearable devices that model their
users’ social contexts.
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